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Abstract 

We consider traÿc fow dynamics for a network of signalized intersections, where the outfow from 
every link is constrained to be equal to a given capacity function if the queue length is positive, and 
equal to the minimum of cumulative infow and capacity function otherwise. Inter-link travel times 
are modeled by fxed parameters. In spite of the resulting dynamics being discontinuous, recent 
work has proved existence and uniqueness of the resulting queue length trajectory if the inter-link 
travel time parameters are strictly bounded away from zero. The proof, which also suggests a 
constructive procedure, relies on showing desired properties on contiguous time intervals of length 
equal to the minimum among all link travel time parameters. We provide an alternate framework 
to obtain queue length trajectories as solution to delay di˙erential equations, where link outfows 
are obtained from the provably unique solution to a linear program. Existence and uniqueness of 
the solution to the proposed model for traÿc fow dynamics is established for piecewise constant 
external infow and capacity functions. Additionally, if the external infow and capacity functions 
are periodic and satisfy a stability condition, then there exists a globally attractive periodic orbit. 
We provide an iterative procedure to compute this periodic orbit. A periodic trajectory is iteratively 
updated for every link based on updates to a specifc time instant when its queue length transitions 
from being zero to being positive. The update for a given link is based on the periodic trajectories 
computed in the previous iteration for its upstream links. The resulting iterates are shown to 
converge uniformly monotonically to the desired periodic orbit. 
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3 Introduction 

Modeling of traÿc fow dynamics for signalized arterial networks has to strike a tradeo˙ between the 
ability to capture variations induced by alternating red/green phases and computational complexity 
of the resulting framework for the purpose of performance evaluation and control synthesis. Store-
and-forward models, e.g., see [1], approximate the dynamics by replacing a time-varying outfow 
due to alternating green and red phase on a link with an equivalent average outfow. Such models 
have been used for optimal green time split control, e.g., see [2,3]. Continuous-time versions of these 
models have also been used for green time control, e.g., in [4]. However, the approximation does 
not model the e˙ect of o˙sets and cycle lengths. These limitations are overcome by discrete-event 
models, which have been utilized for optimal control synthesis for isolated signalized intersections 
in some cases, e.g., see [5, 6]. 

[7] proposed and analyzed a model, which captures o˙set and cycle times in the same spirit as 
discrete-event models. In particular, in [7], a fxed-time control setting is considered, where every 
link is endowed with a given capacity function, that specifes the maximum possible outfow from a 
link as a function of time. In order to maintain non-negativity of queue lengths, the outfow from 
every link is constrained to be equal to the capacity function if the queue length is positive, and 
equal to the minimum of cumulative infow and capacity function otherwise. The inter-link travel 
times are modeled by constant (i.e., independent of queue length) parameters, e.g., δji for travel 
time from link j to i. In spite of the resulting dynamics being discontinuous, it was shown in [7] 
that the traÿc dynamics admits a unique queue length trajectory if the parameters δji are bounded 
away from zero. The proof, which also suggests a constructive procedure, relies on showing desired 
properties on contiguous time intervals of length equal to the minimum among all δji. 

The model parameters δji, which correspond to inter-link travel times (rather than being actual 
inter-link travel-times), are to be estimated, e.g., by ftting to data. Such a ftting process might 
encounter small values of δji for some links, and hence a small value for δ := mini,j δji. As explained 
above, the complexity for solving the model in [7] is related to δ. In this study, we propose an 
alternate framework which allows the parameters δji to be ignored, i.e., set to zero, for some or all 
links. In addition to modeling fexibility, this also allows to tradeo˙ complexity with accuracy: one 
can ignore δji with small values, and then the complexity scales with the minimum of remaining 
δji. 

Specifcally, under our model, one obtains queue length trajectories as solution to delay dif-
ferential equations, where link outfows are obtained from the provably unique solution to a linear 
program. For given queue lengths, this linear program solves for maximum cumulative outfow from 
all links subject to constraints imposed by the link capacity functions, and subject to maintain-
ing non-negativity of queue lengths. Existence and uniqueness of the solution to delay di˙erential 
equations is established for piecewise constant external infow and capacity functions. The existence 
and uniqueness result also extends to adaptive control policies, as long as the resulting capacity 
functions remain piecewise constant. This would happen, e.g., if traÿc signal control parameters 
(green time, cycle length, and o˙sets) at every intersection are updated once per cycle. The piece-
wise constant assumption is practically justifed because a common model for a capacity function is 
that it is equal to the saturated capacity during the green phase and zero otherwise, and external 
infows can be modeled as a sequence of rectangular pulses representing arriving vehicle platoons. 
The key idea in the proof is that, under constant infow and capacity, the set of links with zero 
queue lengths is monotonically non-decreasing, which implies overall fnite discontinuities over any 
given time interval under the piecewise constant assumption. 

If, additionally, the external infow and capacity functions are periodic and satisfy a stability 
6 



condition, then there exists a globally attractive periodic orbit. This result and its proof follows 
the same structure as in [7], but is adapted to the proposed modeling framework. One consequence 
of this adaptation is that we work with the ̀  1 norm, instead of the sup norm in [7], for continuity 
arguments in our proofs. 

Our most novel contribution is a procedure to explicitly calculate the globally attractive periodic 
orbit. Indeed, this was noted as an important “outstanding open problem" in [7], due to its usefulness 
in directly quantifying relevant performance metrics for a given fxed-time control. We provide an 
iterative procedure to compute this periodic orbit. A periodic trajectory is iteratively updated for 
every link based on updates to a specifc time instant when its queue length transitions from being 
zero to being positive. This update for a given link is based on the periodic trajectories computed 
in the previous iteration for upstream links. The resulting iterates are shown to converge uniformly 
monotonically to the desired periodic orbit. 

The representation of periodic orbit in terms of the time instants when queue length transitions 
between being positive and zero, as is implicit in our computational procedure, is to be contrasted 
with harmonic approximation, e.g., in [8, 9]. While this approximation (using the principal har-
monic) leads to tractable optimization formulations, such an approach can potentially face several 
challenges when employed for accurate performance evaluation: computing Fourier coeÿcients is 
not easy due to discontinuous dynamics; no bounds exist on approximation error for a given number 
of harmonics; and most importantly, because of discontinuity, including arbitrarily high number of 
harmonics may not give a zero approximation error due to the well-known Gibbs phenomenon. On 
the other hand, our proposed procedure computes the periodic orbit with arbitrary accuracy. 

In summary, the contributions of the study are as follows. First, we provide a delay di˙erential 
equation framework to directly simulate queue length dynamics under fxed-time or adaptive control, 
by establishing that it has a unique solution as long as the external infow and capacity functions 
are piecewise constant. Second, under additional periodicity and stability condition, we adapt 
a recently proposed technique to establish existence of a globally attractive periodic orbit in our 
setting. Third, and most novel, we provide a procedure to compute this periodic orbit with arbitrary 
accuracy. Illustrative simulations, including comparison with steady-state queue lengths from a 
microscopic traÿc simulator, are also included. 

We emphasize again the novelty of our contributions with respect to [7]. As mentioned earlier, 
our most novel contribution is Algorithm 2 for computing steady-state periodic orbit. The traÿc 
fow model in this study is motivated by the need to have additional fexibility in inter-link travel 
time parameters, which, also gives the fexibility to tradeo˙ accuracy with complexity. We also 
note some limitations of our model. Similar to [7], our model does not capture dependency of 
inter-link travel times on queue lengths, and it also does not incorporate spillbacks. The former 
can be addressed by letting δji(xi) be the inter-link travel time that depends on downstream queue 
length. 

While extensions to adaptive control policies are under works, in Section 8, we report results on 
empirical (i.e., using VISSIM simulations) investigation of stability condition for the proportionally 
fair (PF) algorithm. While PF has its origins in stochastic networks, it has been adapted recently 
for the purpose of adaptive traÿc signal control, e.g., see [4, 10,11]. 

The outline of the report is as follows. Section 4 contains the proposed delay di˙erential equation 
framework to simulate queue length dynamics. Section 5 provides the (non-iterative) framework 
to compute the periodic orbit for an isolated link. This forms the basis for an iterative procedure 
to compute periodic orbits for a network in Section 6 where we also establish uniform monotonic 
convergence of the iterates to the desired periodic orbit. Sections 7 and 8 present simulation results 
and concluding remarks are presented in Section 10. The proofs for most of the technical results are 
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collected in Section 9. The content of this report follows closely, for the most part, the companion 
paper [12]. 

We conclude this section by introducing key concepts and notations to be used throughout the 
report. R, R≥0, R>0, R≤0 and R<0 will stand for real, non-negative real, strictly positive real, 
non-positive real, and strictly negative real, respectively, and N denotes the set of natural numbers. 
For x ∈ R, we let [x]+ = max{x, 0} denote the non-negative part of x. A function f : X ( R → Rn 

is called piece-wise constant if it has only fnitely many pieces, i.e., X can be partitioned into a 
fnite number of contiguous right-open sets over each of which f is constant. The road network 
topology is described by a directed multi-graph G = (V, E) with no self-loops, where V is the set of 
intersections and E is the set of directed links. 

4 The Setup for the Study 

4.1 Traÿc Flow Dynamics 

The network state at time t is described by the vector of queue lengths, x(t) ∈ RE corresponding + 
to the number of stationary vehicles, and the history of relevant past departures from the links, 
β(t), which quantifes the number of vehicles traveling in between links. The quantity β(t) shall 
be described formally soon. Let ci : R≥0 → R≥0 and λi : R≥0 → R≥0 be saturated fow capacity 
and external infow functions, respectively, for link i ∈ E . Let the matrix R ∈ RE×E denote the≥0 
routing of fow, e.g., Rji denotes the fraction of fow departing link j that gets routed to link i. 
Naturally Rji = 0 if link i is not immediately downstream to link j. We shall assume that R is 
sub-stochastic, i.e., all of its entries are non-negative, all the row sums are upper bounded by 1, and 
there is at least one row whose row sum is strictly less than one. We further assume the following 
on the connectivity of G. 

Assumption 1. (i) G is weakly connected, i.e., for every i, j ∈ E, there exists a directed path in 
E from i to j, or from j to i. 

(ii) For every i ∈ E, either the sum of entries of the i-th row in R is strictly less than one, or 
there exists a directed path from i to at least one link j such that the entries of the j-th row 
in R is strictly less than one. 

Remark 1. The weak connectivity aspect of Assumption 1 is without loss of generality: if G is not 
weakly connected, then our analysis applies to each connected component of G, as long as each of 
these connected components satisfes (ii) in Assumption 1. Indeed, part (ii) of Assumption 1 implies 
that, for every vehicle arriving into the network, either it is possible for the vehicle to depart directly 
from the arrival link, or there exists a directed path to an another link from which the vehicle can 
depart the network. Formally, part (ii) of Assumption 1 implies that the spectral radius of R, and 
hence also of RT , is strictly less than one. In particular, this guarantees that I − RT is invertible. 

We now describe a model for traÿc fow dynamics. The queue length dynamics is described by 
a standard mass balance equation: for t ≥ 0, X 

ẋi(t) = λi(t) + Rjizj (t − δji) − zi(x(t), t), i ∈ E (1) 
j∈E 

where zi(x(t), t) denotes the outfow from link i at time t. In (2a), δji ≥ 0 is the model parameter 
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corresponding to travel time from link j to i1 , and zi(t − δji) is a concise notation for zi(x(t − 
δji), t − δji). 

Remark 2. We emphasize that, since the dependency of inter-link travel times on queue length is not 
explicitly modeled, strictly speaking, δji are to be interpreted as model parameters inspired by inter-
link travel times, rather than being actual inter-link travel times. We shall assume this distinction 
to be implicit in this report, and shall not point it out explicitly at all times. In accordance with δji 
being simply model parameter, we allow it to be ignored, i.e., set to be zero, on some or all links. 
An advantage a˙orded by the fexibility to ignore δji in our model is described in Remark 3. 

It would be convenient to rewrite the queue length dynamics as: for t ≥ 0, X 
ẋ i(t) = λ̃i(t) + Rjizj (x(t), t) − zi(x(t), t), i ∈ E (2a) 

j∈Ei 

where X 
λ̃i(t) := λi(t) + Rjizj (t − δji), i ∈ E (3) 

j∈E\Ei 

is the net infow to link i due to external arrivals and arrivals due to vehicles from upstream which 
were traveling until t, and 

Ei := {j ∈ E | Rji > 0 & δji = 0} (4) 

is the set of links upstream of i for which δji = 0 is a resonable approximation. Let δ̄  
j := max{δji : 

i ∈ E , Rji > 0} be the maximum among all travel time parameters from link j to its downstream 
links. We let 

β(t) := {zj(s) : s ∈ [t − δ̄  
j , t)}j∈E (2b) P P R tbe the history of relevant past departures2 , and kβ(t)k1 := i∈E j∈E Rji zj (s) ds be the t−δji 

number of vehicles traveling in between links at time t. 3 Finally, let x(t) := {xi(t)}i∈E , z(x(t), t) ≡ 
z(t) := {zi(x(t), t)}i∈E , λ(t) := {λi(t)}i∈E , and c(t) := {ci(t)}i∈E denote the collection of corre-
sponding quantities over all links. (2a)-(2b) collectively describe the evolution of (x(t), β(t)) start-
ing from initial condition (x(0), β(0)). We propose link outfows z(x(t), t) for t ≥ 0 be obtained as 
solution to the following linear program: 

maximize 1T z 
z∈RE 

subject to zi ≤ ci(t), i ∈ E (2c)X 
zi ≤ λ̃i(t) + Rjizj , if i ∈ I(x) 

j∈Ei 

where 
I(x) := {i ∈ E | xi = 0} 

is the set of links with no stationary vehicles. (2c) computes the maximum cumulative outfow in 
the network, subject to two constraints. The frst one imposes link-wise capacity constraint, and 

1Specifcally, this is the time to travel from the head of queue on link j to the tail of queue on link i. This is to 
be distinguished from total travel time, which is the sum of inter-link travel times and the time spent waiting in the 
queues en route. 

2If δ̄  
j = 0 for some link j, then the departure history from such a link is not included in β(t). 

3It is easy to verify that this defnition of kβ(t)k1 satisfes all the properties of a norm. 
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the second one imposes the constraint that, for a link with zero queue length, its outfow is no 
greater than its infow. The second constraint is to ensure non-negativity of queue lengths. The 
well-posedness of our proposed method for computing link outfows, i.e., uniqueness of solution to 
(2c) is established in the next section. Thereafter, we establish existence and uniqueness of the 
solution to our traÿc fow model in (2a)-(2b)-(2c), which we shall collectively refer to as (2). 

In order to present our results on existence and uniqueness concisely, we introduce a couple of 
more notations. Let δ̄  := max(j,i)∈E×E: Rji>0 δji and δ := min(j,i)∈E×E: Rji>0 δji be the, respectively, 
maximum and minimum among all inter-link travel time parameters. 

Remark 3. In Remark 2, we emphasize that our model allows the inter-link travel time parameters 
δji to be zero. Since a solution to (2) is obtained by concatenating its solutions over intervals of 
length δ, the complexity for obtaining solution increases with decreasing δ. In our model, we can 
mitigate potentially huge complexity due to small δ by ignoring δji with small values, so that the 
complexity is then related to the minimum of the remaining δji. Since the model in [7] does not 
allow δji = 0, it does not o˙er such a fexibility. 

4.2 Existence of Solution to (2a) 

The proof of the next result is provided in Section 9. 

Proposition 1. Given (x(t), β(t)), λ(t), and c(t), (2c) has a unique solution. Moreover, the optimal 
solution satisfes ( 

ci(t) i ∈ E \ I(x)n ozi(x, t) = ˜ P (5)
min ci(t), λi(t) + Rjizj (x, t) i ∈ I(x)j∈Ei 

Proposition 1 implies that z(x(t), t) in (1), or equivalently in (2) and (3), is well-defned. With P˜regards to (5), indeed for i ∈ I(x), zi(x, t) = λi(t) + j∈Ei 
Rjizj (x, t), except possibly at time 

instants when there is a change in I(x). It is rather straightforward to see that (2) admits a unique 
solution in between such changes. The frequency of such changes in general depends on λ(t), c(t), 
and the initial condition β(0). We bound the frequency of changes, and thereby establish existence 
and uniqueness of the solution to (2) for all t ≥ 0, under the following practical assumption. 

Assumption 2. {λi : [0, T ] → R≥E 
0}i∈E , {ci : [0, T ] → RE≥0}i∈E , and {zi : [−δ,̄ 0] → R≥E 

0}i∈E are all 
piece-wise constant. 

The proof of the next result is provided in Section 9. 

Proposition 2. Let λ(t), c(t) and the initial condition (x(0), β(0)) satisfy Assumption 2. Then, 
there exists a unique solution (x(t), β(t)) ≥ 0 for all t ≥ 0, to (2). 

Remark 4. 1. Unlike [7], existence of a unique solution to (2) does not require δ to be strictly 
greater than zero. However, this comes at the expense of piecewise constant assumption. 

2. Assumption 2 is practically justifed because a common model for a capacity function is such 
that it is equal to the saturated capacity during the green phase and zero otherwise, and external 
infows, as well as past departures before t = 0 can be modeled as a sequence of rectangular 
pulses modeling vehicle platoons. 
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3. Proposition 2 holds true also when the capacity function is state-dependent (referred to as 
adaptive traÿc signal control), but piecewise constant. For example, let the capacity function 

maxci(t) be equal to c if t ∈ [θi, θi + gi(0)] ∪ [T + θi, T + θi + gi(1)] ∪ . . ., and equal to zero oth-i 
erwise, where θi ∈ [0, T ] is the o˙set, and {gi(0), gi(1), . . .} is a sequence of green times. Such 
green times can be determined as a function of queue lengths. One such simple proportional 
rule, when the capacity functions for all the incoming links at every intersection are mutually 
exclusive, is: 

kxi(k − 1 : k)k1 
gi(k) = P , k = 1, 2, . . . 

kxj (k − 1 : k)k1j 

The summation in the denominator is over all links incoming to the intersection to which iR kT is incident, and kxi(k − 1 : k)k1 := xi(t) dt is proportional to the average queue length (k−1)T 
during the k-th cycle on link i. 

4.3 Periodic Solution 

It is straightforward to see that the solution to (2) can be equivalently described in terms of 
(x(t), z(t)). Therefore, we shall use (x(t), β(t)) and (x(t), z(t)) interchangeably to refer to the 
solution to (2). We now develop a result analogous to the one in [7] on the existence of a globally 
attractive periodic orbit (x ∗(t), z ∗(t)), under the following periodicity assumption. 

Assumption 3. The external infow functions {λi(t)}i∈E and capacity functions {ci(t)}i∈E are all 
periodic with the same period T > 0. 4 

Let Z T Z T 

λ̄i := 
1 

λi(t) dt, c̄i := 
1 

ci(t) dt, i ∈ E (6)
T T0 0 

be the external infow and capacity functions averaged over one period. Let c̄ = {c̄i : i ∈ E} and 
λ̄ = {λ̄ 

i : i ∈ E} denote the collection of external infow and capacity functions, respectively, for 
all links. The following stability condition will be one of the suÿcient conditions for establishing 
periodicity of (x(t), z(t)) at steady state. 

Defnition 1 (Stability Condition). There exists � > 0 such that [I − RT ]c̄ > λ̄+ �1. 

The proof of the following theorem is provided in Section 9. 

Theorem 1. Let λ(t), c(t) and the initial condition (x(0), β(0)) satisfy Assumptions 2 and 3, and 
∗the stability condition in Defnition 1. Then, there exists a unique periodic state trajectory (x , z ∗) 

with period T for (2), to which every trajectory converges. 

4.4 Problem Statement 
∗While one can use (2) to obtain the steady state (x , z ∗) by direct simulations, in this study, our 

∗objective is to develop an alternate framework to obtain (x , z ∗). 
4As noted in [7], requiring the period to be the same is without loss of generality. 
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5 Steady State Computation for an Isolated Link 

Let yi(t) be the cumulative infow into link i ∈ E . Referring to (2a), this quantity is given by P 
yi(t) := λi(t) + j∈E Rjizj (t − δji). For an isolated link i, yi(t) = λi(t). It is easy to see that 
∗ xi (t) ≡ 0 if yi(t) ≤ ci(t) for all t ∈ [0, T ). In order to avoid such trivialities, we assume that the set 
{t ∈ [0, T ) | yi(t) > ci(t)} has non-zero measure. The key in our approach is a procedure to easily 

∗ ∗compute xi (s) for some s ∈ [0, T ). Thereafter, xi (t) for all t ∈ [0, T ) can be easily obtained by 
simulating (2) over a time interval of length T . The natural candidates for such a s ∈ [0, T ) are 

∗the time instants when the queue length x transitions between zero and positive values. We now i 
provide a detailed procedure to compute such a transition point. We implicitly assume throughout 
this and the next section that Assumption 2 and the stability condition in Defnition 1 holds true. 

1 ∗Defnition 2 (Transition Points). Let {α 
from being zero to being positive. 

} be the time instants in [0, T ) when x transitions i , . . . , α
L 
i i 

Figure 1 illustrates the transition points for a sample scenario. 

0 T/2 T
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 (t)
c(t)
x(t)

1 2

B2 W3W1 W2B1

Figure 1: Illustration of transition points, and negative/positive sets. In this case, Mw = 3 and M b = 2. 
Subscript i is not shown for brevity. 

Remark 5. (i) Under the stability condition in Defnition 1, L ≥ 1, as also noted in [7, Theorem 
2]. 

∗ ∗(ii) For a given yi(t) and ci(t), Theorem 1 implies uniqueness of the resulting (xi , zi ), and hence 
1of {αi , . . . , α

L}.i 

∗(iii) As noted earlier, the knowledge of xi (s) at any single time instant s 
∗ 
i (t) over the entire period [0, T ). Indeed, x ∗(s) 1 

∈ [0, T ) is suÿcient 
to determine x 0 if s ∈ {α 

∗ is computed, inspired 
}. By= i , . . . , α

L 
i 

∗construction such a x corresponds to a periodic orbit for (2). Once xi i 
∗by Proposition 1 and remarks immediately following it, let z be given by: i ( 

∗ 
∗ yi(t) xi (t) = 0 

zi (t) = (7)∗ ci(t) xi (t) > 0 

∗ ∗ ∗Periodicity of xi , yi(t) and ci(t) imply that z (t) in (7) is periodic, i.e., (x , z ∗) is a periodic i 
orbit. The uniqueness result in Theorem 1 implies that this is indeed the desired object to be 
computed. 
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The time instant s referenced in Remark 5 (iii), for whose computation we now provide a 
procedure, is αL

i . We need the notion of negative and positive sets, defned next. 

Mb 
iDefnition 3 (Negative and Positive Sets). Let {Bi 

1 , . . . , B } be contiguous subsets of [0, T ) ofi 
Mw 

inon-zero size in which yi(t) < ci(t), and let {Wi 
1 , . . . ,W } be contiguous subsets of [0, T ) ofi 

non-zero size in which yi(t) > ci(t). 

Remark 6. (i) Since the set {t ∈ [0, T ) | yi(t) > ci(t)} is assumed to have non-zero measure, 
under the stability condition in Defnition 1, we have M b ≥ 1 and Mw ≥ 1.i i 

Mb Mw 
i i(ii) The sets {Bi 

1 , . . . , B } and {Wi 
1 , . . . ,W } do not necessarily form a partition of [0, T ).i i 

Specifcally, they exclude sets where yi(t) = ci(t). 

Illustration of negative and positive sets are included in Figure 1. In preparation for the next 
k k¯ k kresult, let B = [bki , b

k], k ∈ {1, . . . ,M b} and W = [wi , w̄ ], k ∈ {1, . . . ,Mw} be closures of Bk 
i i i i i i i 

and Wi
k , respectively. 

Proposition 3. Consider a link i with infow function yi(t) and capacity function ci(t), both periodic 
with period T . Let the transition points and positive/negative sets be given by Defnitions 2 and 3 
respectively. Then, there exists a strictly increasing qα : {1, . . . , L} → {1, . . . ,Mw} such thati 

qα(`)α ̀  = w for all ̀  ∈ {1, . . . , L}.i i 

Proof. We drop the subscript i for brevity in notation. The strictly increasing property of qα, if it 
exists, is straightforward; we provide a proof for existence. For a given ̀  ∈ {1, . . . , L − 1}, we let 
γ ̀  ∈ (α ̀  , α ̀+1) denote the time instant in between α ̀  and α ̀+1 when the queue length transitions 
from being positive to being zero. Similarly, we let γL ∈ (αL, T ) be the time instant in between 
αL and T when the queue length transitions from being positive to zero if it exists, or else we let 
γL = T . We also let γ0 ∈ (0, α1) be the time instant in between 0 and α1 when the queue length 
transitions from being positive to zero if it exists, or else we let γ0 = 0. 

Mw1Assume, by contradiction, that there exists ̀  ∈ {1, . . . , L} such that α ̀  / , . . . , w∈ {w }. Let n o 
a a1 := max a ∈ {1, . . . ,Mw} | w < α ` � 

if it exists, and is equal to zero otherwise. Similarly, let a2 := max a ∈ {1, . . . ,M b} | ba ≤ α ̀  , if 
it exists, and is equal to zero otherwise. Since a1 and a2 can not both be equal to zero, we have 

0a1 6= a2. Therefore, consider the following cases, where we use the convention that w = 0 = b0: � � 
a1 < ba2 : ba2 a1+11. w From the defnition of a1, we have (i) α ̀  ∈ , w if a1 < Mw , or (ii) 

α ̀  ∈ [ba2 , T ] otherwise. In case (i), ∃ � > 0 such that α ̀  + � < min{wa1+1, γ ̀  }, implying 
y(t) − z(t) = y(t) − c(t) ≤ 0 for all t ∈ [α ̀  , α ̀  + �]. Similar argument holds true for case (ii).R α ̀  +�Therefore, x(α ̀  + �) = x(α ̀  ) + α ̀  (y(t) − c(t)) dt ≤ x(α ̀  ) = 0 which is in contradiction to� � 
x(α ̀  + �) > 0, since α ̀  + � ∈ α ̀  , γ ̀  . 

a12. ba2 < wa1 : The defnitions of a1 and a2 imply that α ̀  ∈ (w , w̄a1 ]. Therefore, ∃ � > 0 such 
that α ̀  − � > max{wa1 , γ ̀−1}, which implies that y(t) > c(t) for all t ∈ [α ̀  − �, α ̀  ]. Therefore, R α ̀  R α ̀  R α ̀  

x(α ̀  ) = x(α ̀  − �) + (y(t) − z(t)) dt = (y(t) − z(t)) dt > (c(t) − z(t)) dt ≥ 0,α`−� α`−� α`−� 
which contradicts x(α ̀  ) = 0. 

This establishes the proposition. 
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Proposition 3 narrows down our search for αi
L . We now sharpen this result to the point where 

it readily yields αi
L . In prepartion for this result, we need a few more defnitions. For s1, s2 ∈ [0, T ], 

let Z Z s2 s2 

Ci(s1, s2) := ci(t) dt, Yi(s1, s2) := yi(t) dt 
s1 s1 

r1 rmLet Wα := {w , . . . , w } be such that r1 = 1, and, for j ∈ {2, . . . ,m},i i i n 
bp ind−1 ind = argmin ind ∈ {rj−1 + 1, . . . ,Mw} ∃ p ∈ {1, . . . ,Mi

b} s.t. ̄  ∈ [w , w ] &rj i i i i o 
rj−1 b̄p

rj−1 b̄p bp ind rj−1 b̄p
rj−1 b̄p bp indYi(w , ) ≤ Ci(w , ) if ̄  < w , or Yi(w , ) < Ci(w , ) if ̄ = w (8)i i i i i i i i i i i i 

where m is implicitly defned by the value of rj where the set over which argmin is taken in (8) 
is empty. In words, (8) implies that, for j = 2, . . . ,m, rj is the index of the next positive set before 
which there exists a negative set over which the solution to (2), assuming x(w 

rj−1 ) = 0, hits zero.i 
The “or" in the second line of (8) is to ensure that the time instant when the trajectory hits zero 

inddoes not coincide with w , which is a candidate for α ̀  for some ̀  ∈ {1, . . . , L} (cf. Proposition 4). i 
See Figure 2 for an illustration. 

t

W B W B W

                
            . . .

43 wb  3r54
wwb   

t),
w

C(
t),

w
Y(

2
2

r
r

�

2r3 ww  

Figure 2: Illustration of the procedure in (8) to compute Wα . Specifcally, the fgure illustrates how (8)i 
r3 5 r2 3determines w to be equal to w , given w = w . Subscript i is not shown for brevity. 

Mw 
1 iClearly, Wα ⊆ {wi , . . . , w }, which from Proposition 3 is known to contain {α1 

i , . . . , α
L}.i i i 

The next result shows that in fact the last L entries of Wα correspond to {αi 
1 , . . . , αL}.i i 

Proposition 4. Consider a link i with infow function yi(t) and capacity function ci(t), both periodic 
with period T , and the corresponding set Wα defned via (8). Then {αi 

1 , . . . , αL} ⊆ Wi
α , and, ini i 

particular, 
rm+`−Lα ` = w , ` ∈ {1, . . . , L} (9)i i 

Proof. We drop subscript i for brevity in notation. Assume that there exists a ` ∈ {1, . . . , L}
qα(`) r1 r1such that α ̀  = w ∈/ {w , . . . , wrm }. let ŵ be the largest element in {w , . . . , wrm } such 

r1that ŵ < α ̀  . Since r1 = 1 (by defnition), taking into account Proposition 3, ŵ ≥ w is well-
defned. Recall the defnition of γ ̀−1 ∈ (α ̀−1, α ̀  ) from the proof of Proposition 3, and in particular 

kthat α ̀  is the w immediately after γ ̀−1 . If γ ̀−1 < ŵ, then α ̀  ≤ ŵ, giving a contradiction. 
γ ̀−1Therefore, ŵ < < α ̀  . It is easy to see that γ ̀−1 ∈ (bζ , ̄bζ ] for some ζ ∈ {1, . . . ,M b}. 

¯ ¯ ¯ ¯Therefore, x(ŵ)+Y (ŵ, bζ )−C(ŵ, bζ ) = x(ŵ)+Y (ŵ, γ ̀−1)−C(ŵ, γ ̀−1)+Y (γ ̀−1 , bζ )−C(γ ̀−1 , bζ ) = 
Y (γ ̀−1 , ̄bζ )−C(γ ̀−1 , ̄bζ ) ≤ 0. This in turn would give Y (ŵ, ̄bζ )−C(ŵ, ̄bζ ) ≤ −x(ŵ) ≤ 0. 5 However, 

5In order to minimize technicalities, we only cover the frst case separated by “or" in (8); when the second case 
holds, we would have γ `−1 ∈ (bζ , ̄bζ ) giving strict inequality. 
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referring to (8), this would imply qα(`) ∈ {r1, . . . , rm}, giving a contradiction. This proves the frst 
claim in the proposition. 

rjIn order to prove (9), observe that if α ̀  = w for some ̀  ∈ {1, . . . , L − 1}, then (8) implies 
α ̀+1 rj+1 rm1+1= w . If we assume that qα(L) = rm1 with m1 < m, then (8) implies that w > αL is a 
point where the queue length transitions from being zero to being positive, giving a contradiction. 

rmTherefore, αL = w . 

Since L is not known, (9) can not be used to compute all α ̀i , ` ∈ {1, . . . , L}. However, (9) 
readily gives 

rmαL = w (10)i i 

from which x ∗(t), t ∈ [0, T ], can then be computed as explained in Remark 5 (iii). In order to 
execute this last step, it is more convenient to use: � �+∗ xi (0) = Yi(αi

L, T ) − Ci(α
L
i , T ) (11) 

which is obtained by integrating (2) from αL to T , and recalling (8) for the defnition of rm. Thei 
entire procedure is summarized in Algorithm 1. 

∗ ∗Algorithm 1: Computation of (xi , zi ) for isolated link i 
input : T - periodic infow function λi(t) and periodic capacity function ci(t) 
initialization: yi(t) = λi(t), t ∈ [0, T ]; 

∗compute αL from (10) and x (0) from (11); i i 
∗ ∗ ∗compute x (t), t ∈ [0, T ], by simulation of (2) with initial condition x (0); compute z (t),i i i 

t ∈ [0, T ], from (7); 

∗ ∗Let the relationship between (xi , zi ) and (yi, ci), as determined by Algorithm 1, be denoted 
∗ ∗by x = Fx(yi, ci) and z = Fz(yi, ci) respectively. These notations will be used in extending the i i 

procedure to compute steady state for the network. 

6 Steady State Computation For a Network 

Algorithm 2 formally describes the steps to compute steady-state for a general network. The num-
ber of iterations in the while loop in Algorithm 2 is determined by a termination criterion. While 
one could explicitly specify the number of iterations for termination criterion, a better criterionR T∗ 1 ∗ can be formulated as follows. For i ∈ E , let z̄  := zi (t) be the average outfow from link i ati T 0 

∗¯steady-state. Integrating (2) over [0, T ] at steady state, we get that 0 = λ = RT z̄∗ − z̄  , where we 
∗ use notation from (6). This then gives z̄  = (I − RT )−1λ̄ (cf. Remark 1 for invertibility of I − RT ). 

Therefore, considering monotonicity of the iterates z(k) of Algorithm 2 as established in Proposi-R T � �(k) 1 (k) ∗ ktion 5, and letting z̄  := z (t) dt, a termination criterion could be maxi∈E z̄  − z̄  ≤ �,i T 0 i i i 
for a specifed � > 0. 

Proposition 5. Consider a network with T -periodic external infows λ(t) and T -periodic capacity 
(k+1)(t) ≥functions c(t). The link outfows computed by Algorithm 2 satisfy the following for all k: z 

(k+1)(t) ≥ xz(k)(t) and x (k)(t) for all t ∈ [0, T ]. 
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∗ ∗Algorithm 2: Computation of (xi , z ), i ∈ E i 

input : periodic infow functions λi(t) and periodic capacity functions ci(t), i ∈ E 

initialization: k = 1; y(1)(t) = λi(t), t ∈ [0, T ], for all i ∈ E ;i 
while termination criterion is not met do 

for all i ∈ E : 
(k) (k) (k) (k)compute x = Fx(y , ci) and z = Fz(y , ci) from Algorithm 1 ; i i i iPk+1 (k)compute y (t) = λi(t) + Rjiz (t − δji), i ∈ E ;i j∈E i 

k = k + 1; 
end 

P(2) (1)Proof. We prove by induction. Algorithm 2 implies that, for all i ∈ E , y (t) = λi(t)+ Rjiz (t−i j j 
(1) (2)(t) ≥ xδji) ≥ λi(t) = yi (t). Therefore, Corollary 1 (in Section 9.4) implies that x (1)(t) and 

(2)(t) ≥ z (2)(t − δ) ≥ zz (1)(t), and hence z (1)(t − δ) for all i ∈ E , t ∈ [0, T ], δ ≥ 0. 
(k̄+1) P (k̄)¯Assume that z(k)(t−δ) ≥ z(k−1)(t−δ) for all k = 2, . . . , k. Since y (t) = λi(t)+ (t−i j RjizjP (k̄−1) (k̄) (k̄+1) (k̄)

δji) ≥ λi(t) + Rjiz (t − δji) = y (t), Corollary 1 implies that x (t) ≥ x (t) andj j i i i 
(k̄+1) (k̄)

z (t − δ) ≥ z (t − δ) for all i ∈ E , t ∈ [0, T ], δ ≥ 0.i i 

z
(k)

(t) ≤ ci(t) for all k. An upper bound on x(k) can be shown along similar lines as Lemma 3 i 
(k) (k))(in Section 9.3). Combining this with monotonicity from Proposition 5 implies that (x , z 

converges to (x̂, ẑ). Periodicity of (x(k), z(k)) for every k implies periodicity of (x̂, ẑ). It is easy to seeP(k) (k−1)from the construction of Algorithm 2 that, for every iteration k: ẋ (t) = λi(t)+ (t−i j∈E Rjizj 

δji) − zi 
(k)

(t) for all i ∈ E . Therefore, for any t ≥ 0: ⎛ ⎞Z t+T X 
(k) (k) (k−1) (k)

0 = x (t + T ) − x (t) = ⎝λi(s) + Rjiz (s − δji) − z (s)⎠ ds, i ∈ E i i j i 
t j∈E 

where the frst equality follows from periodicity of x(k) by construction. Therefore, taking the limit 
as k → +∞, we get that, for all t ≥ 0: ⎛ ⎞Z t+T X 

0 = x̂i(t + T ) − x̂i(t) = ⎝λi(s) + Rjiẑj (s − δji) − ẑi(s)⎠ ds, i ∈ E 
t j∈E 

This implies that (x̂, ẑ) is a periodic orbit for (2a). The uniqueness result in Theorem 1 then implies 
that it is indeed the object to be computed. 

Remark 7. Algorithm 2 naturally lends itself to a distributed implementation: during an iteration, 
(k) (k)all the links independently update their respective (x , z ), and at the end of the iteration, each i i 

link transmits its updated z(k) to its immediately downstream links.i 

7 Simulations 

In this section, we report simulation results in two parts. In Section 7.1, we illustrate consistency 
between steady-state computations from Algorithm 2 and the steady-state obtained from direct 
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simulations in MATLAB, on a synthetic network. In Section 7.2, we report comparison between 
steady-state computations from Algorithm 2 with the output from PTV VISSIM, a well-known 
microscopic traÿc simulator, for a sub-network in downtown Los Angeles. 

7.1 MATLAB simulations 

Figure 3: Graph topology of the network used in the simulations. 

The graph topology of the network used for simulations is shown in Figure 3. All intersections 
have common cycle time of T = 20. The external infows are constant λi(t) ≡ λi, i ∈ E , and the 

maxvalues are provided in Table 1. The capacity functions are of the form: ci(t) = c if t ∈ [θi, θi +gi]i 
maxand zero otherwise. The values of c , θi and gi, which can be interpreted as saturation capacity, i 

o˙set and green split are given in Table 2. 

Link ID (i) 1 2 3 4 5 6 7 8 9 10 11 12 
λi 1.70 2.27 4.35 3.11 9.23 4.30 1.84 9.04 9.79 4.38 1.11 2.58 

Link ID (i) 13 14 15 16 17 18 19 20 21 22 23 24 
λi 4.08 5.94 2.62 6.02 7.11 2.21 1.17 2.96 3.18 4.24 5.07 0.85 

Table 1: External infow values. 

Link ID (i) 1 2 3 4 5 6 7 8 9 10 11 12 
maxci 47.81 20.34 147.74 212.15 363.33 1192.03 362.82 67.30 706.05 69.93 142.51 114.89 
θi 16.02 5.24 0.58 1.49 18.57 3.47 14.60 5.05 9.77 7.01 15.88 4.72 
gi 5.47 18.22 6.42 3.56 6.15 1.77 1.27 10.96 1.78 13.57 8.14 8.92 

Link ID (i) 13 14 15 16 17 18 19 20 21 22 23 24 
maxci 48.06 154.75 134.76 279.76 98.60 131.25 94.35 98.10 398.25 94.87 107.44 176.15 
θi 11.56 4.02 11.57 13.65 4.74 9.45 9.17 2.09 15.94 19.69 17.20 18.05 
gi 10.53 5.43 8.12 4.92 11.19 5.15 8.02 7.67 2.11 11.87 11.97 6.68 

Table 2: Parameters of link capacity functions. 

These values of λ(t) and c(t) satisfy the stability condition in Defnition 1. The routing matrix 
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is chosen to be: ⎞⎛ 

R = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

0 0.44 0.23 0 0 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0.33 0 0 0 0.57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0.34 0 0 0 0 0.56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0.19 0.5 0 0 0 0 0.21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0.34 0 0 0 0 0.35 0 0 0 0.21 0 0 0 0 0 0 0 0 0 

0.05 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0.06 0 0 0 0.27 0.3 0 0 0 0.27 0 0 0 0 0 0 0 
0 0.08 0.55 0 0 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0.41 0 0 0 0.26 0 0 0 0 0.23 0 0 0 0 0 
0 0 0 0.38 0 0 0 0 0.52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0.2 0 0 0 0.24 0.13 0 0 0 0.33 0 0 0 0 0 0 0 
0 0 0 0 0 0.08 0 0 0 0 0.33 0 0 0 0.49 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0.32 0 0 0 0.22 0 0 0 0 0.36 0 0 0 0 0 
0 0 0 0 0 0 0 0.12 0 0 0 0.43 0.12 0 0 0 0.23 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.57 0 0 0 0 0.33 0 0 0 
0 0 0 0 0 0.84 0 0 0 0 0.02 0 0 0 0.04 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0.39 0.36 0 
0 0 0 0 0 0 0 0.23 0 0 0 0.29 0.03 0 0 0 0.34 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.19 0 0 0 0.71 
0 0 0 0 0 0 0 0 0 0.22 0 0 0 0.35 0 0 0 0 0.33 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.28 0 0 0 0.32 0.3 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.54 0 0 0 0 0.36 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.42 0 0 0 0.48 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.19 0 0 0 0.28 0.43 0 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

While the entries of R are chosen arbitrarily, the sum of entries on each row is 0.9 < 1. This 
combined with the fact that the network shown in Figure 3 is weakly connected, Assumption 1 is 
satisfed. The inter-link travel time parameters are all approximated as zero, i.e., δ̄ = 0. 

∗Figure 4 shows the root mean squared error (RMSE) between the (x , z ∗) obtained by direct 
simulation of (2), with initial condition xi(0) = 10 for all i ∈ E , over a suÿciently long time horizon, 
and the output (x(k) (k)) of Algorithm 2 during various iterations. The RMSE between x(k) r and, z i R T (k) ∗(x (t)−x (t))2 dt (k)t=0 i i The RMSE between z ∗ and z ∗ 

i is defned similarly. Theis defned asx .i T i 

monotonically decreasing RMSE in Figure 4 (a) and (b) illustrates the monotonic convergence of 
∗the iterates of Algorithm 2 to the desired periodic orbit (x , z ∗). Figure 4 (c) illustrates uniform 

∗monotone convergence of x(k) to xi , as stated in Proposition 5, for a sample link. i 

7.2 VISSIM simulations 

In this section, we report comparison between steady-state computations from Algorithm 2 with 
the output from PTV VISSIM for the downtown Los Angeles sub-network shown in Figure 5. 

All the intersections have common cycle time of T = 90 second. Referring to the notations in 
Section 4, the values of o˙sets and green times for various capacity functions were obtained from 
Los Angeles Department of Transportation (LADOT) signal timing sheets, and are reported in 
Table 3. 

maxThe values of saturated fow capacities, denoted as c in Table 3, are based on the values 
commonly reported in the literature, e.g., [13]: 1800 vehicle/hour/lane for through movement, 1600 
vehicle/hour/lane for right-turn and left-turn movements, 1200 vehicle/hour/lane for lanes that are 
shared between through movement and left/right turn and 960 vehicle/hour/lane for permissive 
left turns. For each link, the total saturated fow capacity is computed by adding up the capacities 
of all the lanes associated with it; see Figure 6 for an illustration. The resulting values for all the 
links are reported in Table 3. The external infows λ(t) ≡ λ are taken to be non-zero only on the 
boundary links. These values, which are estimated from loop detector data during weekday PM 
peak hour (between 4pm to 6pm) from May 1 to May 31, 2013, are reported in Table 4. 

For every link, the turn ratios are chosen to be proportional to the number of lanes dedicated 
to each movement. For example, for link 44 (cf. Figure 6), the ratios are 0.5, 0.25 and 0.25 for 
through movement, right turn and left turn, respectively. As a result, the sum of entries of rows of 
R associated with links which have downstream exit links, shown in dashed arrow in Figure 5, is 
strictly less than one. An example is link 8. On the other hand, for links with no downstream exit 
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Direct simulation

(a) (b) (c) 

∗ ∗Figure 4: Evolution of RMSE between (a) x(k) and x , and (b) z(k) and z for a few representative links. (c) 
∗(top) x(k) from a few representative iterations and (bottom) xi , both for i = 17.i 

(a) (b) 

Figure 5: The Los Angeles downtown sub-network used in the simulations: (a) graph topology (b) map view. 
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Figure 6: Illustration of movements, and lanes on link 44 at intersection number 7 in the network shown in 
Figure 5. Link number 44 contains two lanes: one lane supports through+right movements, and the second 

maxlane supports through+left movements. Therefore, the saturation capacity of link 44 is c = 1200 + 1200 = 4 
2400 veh/hour, as also noted in Table 3. 

links, e.g., link 44, the entries of the corresponding row in R add up to be equal to one. Combining 
this with the fact that the network shown in Figure 5 (a) is weakly connected, Assumption 1 is 
satisfed in this case. Moreover, matrix R and values in Tables 3 and 4 satisfy the stability condition 

¯in Defnition 1. The link travel time parameters δi, i ∈ E , are constant and taken to be equal to 
free-fow travel time, i.e., the link length divided by the link speed limit. These values are presented 
in Table 5. 

Link ID (i) 1 2 3 4 5 6 7 8 9 10 11 12 
maxc (veh/hour) i 7860 5100 4560 3960 3960 3000 4560 8500 6600 3000 2400 7000 

θi (sec) 88 77 77 73 73 55 38 50 1 31 31 50 
gi (sec) 52 43 43 48 48 48 53 36 44 44 40 49 

Link ID (i) 13 14 15 16 17 18 19 20 21 22 23 24 
maxc (veh/hour) i 4560 6600 6400 3000 3000 4800 3360 6600 4200 4260 3000 6300 

θi (sec) 16 38 65 63 31 64 30 16 64 87 63 84 
gi (sec) 51 53 59 52 44 54 44 51 44 39 52 39 

Link ID (i) 25 26 27 28 29 30 31 32 33 34 35 36 
maxc (veh/hour) i 2400 3000 3000 2400 2400 3000 7860 6600 2400 8500 4560 5200 

θi (sec) 76 18 18 36 36 35 88 30 31 13 55 11 
gi (sec) 44 45 45 51 51 49 52 45 40 40 48 39 

Link ID (i) 37 38 39 40 41 42 43 44 45 46 47 48 
maxc (veh/hour) i 3000 4260 7560 6060 6200 1500 5200 2400 3100 3000 2400 3000 

θi (sec) 35 87 30 76 1 47 47 77 67 34 27 30 
gi (sec) 49 39 44 44 36 44 44 44 37 29 36 34 

Table 3: Parameters of link capacity functions. 

Link ID (i) 31 32 33 34 35 36 37 38 39 40 
λi (veh/hour) 1271.4 270.4 755.3 573.3 414.7 694.2 185.9 185.9 1323.4 826.8 

Table 4: External infow on links located on the boundary of the network. 

∗Figure 7 shows RMSE between the (x , z ∗) obtained by direct simulation of (2), with initial 
condition xi(0) = 10 for all i ∈ E , over a suÿciently long time horizon, and the output (x , z (k) (k)) 
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Link ID (i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
δ̄i (sec) 8 8 8 8 8 8 9 9 10 11 11 11 16 16 11 11 11 11 11 11 12 10 10 9 

Link ID (i) 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 
δ̄i (sec) 9 9 8 8 9 9 9 10 10 10 10 8 5 22 23 23 7 7 8 8 7 7 8 8 

Table 5: Link travel time parameters. 
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∗ ∗Figure 7: Evolution of RMSE between (a) x(k) and x , and (b) z(k) and z for a few representative links. (c) 
∗(top) x(k) from a few representative iterations and (bottom) xi , both for i = 22.i 

of Algorithm 2 during various iterations. The monotonically decreasing RMSE in Figure 7 (a) and 
(b) illustrates the monotonic convergence of the iterates of Algorithm 2 to the desired periodic 

∗ ∗orbit (x , z ∗). Figure 7 (c) illustrates uniform monotone convergence of x(k) to xi , as stated ini 
Proposition 5, for a sample link. 

We further compare the queue length obtained from Algorithm 2 with microscopic traÿc sim-
ulations in PTV VISSIM run for a 2-hour scenario starting from zero initial condition. Figure 8 
compares the queue length from the last 20 cycles in VISSIM simulations, and steady-state com-
putations from Algorithm 2, for a few representative links. For the queue lengths from VISSIM, 
the fgure plots the mean queue length (obtained from last 20 cycles), as well as one standard 
deviation represented by the error bars. In spite of the fact that the dynamical model in (2) is 
a coarse approximation of the microscopic traÿc dynamics, e.g., (2) neglects spillbacks, does not 
model dependency of link travel times on queue lengths, and utilizes a simplifed abstraction of 
capacity function in the form of a rectangular pulse, the plots in Figure 8 show reasonable match 
between the steady-state corresponding to the two models. The mismatch, especially the shift in 
Figure 7(c), could be attributed to the aforementioned features that we ignored in our model. 

8 Throughput Evaluation of Proportionally Fair Algorithm in Micro-
simulations 

In our previous work in [14], we have adapted the well-known proportionally fair (PF) algorithm 
from communication networks as an adaptive traÿc signal control algorithm. Its performance was 
compared against an another class of algorithms, called max-pressure algorithms [15], in [11]. In 
the context of stochastic networks, it is well-known that PF is throughput optimal, e.g., see [16]. In 
this study, our objective is to investigate, via micro-simulations in PTV VISSIM, to what extent is 
this result expected to hold true for signalized networks. To that purpose, we frst recall a simple 
analytical procedure to compute an outer approximation of the throughput region. Simulations 
are then used to estimate a boundary point on the empirical throughput region. The di˙erence 
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Figure 8: Comparison of queue length obtained from Algorithm 2 and VISSIM simulations for a few representative 
links (a) i = 20, (b) i = 36 and (c) i = 15, in the network shown in Figure 5. Here,“queue length" for link iP R 0∗ ∗is equal to xi (t) + j∈E Rji δji 

zj (t − s) ds, i.e., it corresponds to the number of vehicles on link i which are 
stationary as well as in transit from upstream. 

between this boundary point and the corresponding point on the outer approximation then gives a 
crude estimate of the sub-optimality. Adding more sampling points to the boundary of empirical 
throughput region to improve estimate of sub-optimality is ongoing, and will be reported in future. 

8.1 Outer Approximation of the Throughput Region 

The network throughput is described in terms of feasible external infows. A set of (average) 
maxexternal infows λ̄ is said to be feasible for a given network under saturated fow capacities c , a 

route choice model, and a traÿc signal control policy if the fraction of vehicles spilling outside the 
boundary of the network is negligible. Since there are 10 entry points in our network in Figure 5, 
the set of feasible external infows is a 10 dimensional set. In general, it is hard to compute this 
set exactly. We frst describe a simple procedure to compute an outer approximation to this set. 
Let z(λ̄, R, cmax) be the corresponding vector of steady state fows under fxed-time controllers 
associated with various movements. 

Then a necessary condition for the external infow λ̄ to be feasible is that the corresponding 
steady state fow satisfes the following at every intersection. 

mX zij G 
max ≤ , (12)max

(i,j)∈φr c Tijr=1 

where {φr}r=1,...,m is the set of the phases at the intersection, and zij = ziRij is the steady state 
fow corresponding to the movement (i, j) i.e., from link i incoming to the intersection to the link 

max maxj outgoing from the intersection, and cij having similar relationship to ci . (12) implies that 
the sum of the critical fow ratio associated with di˙erent phases, at every intersection, is less than 
the ratio of green light time to total cycle time. Such a condition is standard for fxed time con-
trollers. It is reasonable to assume that these theoretical estimates provide an outer approximation 
of the capacity region under practical constraints including, fnite queue length capacity, imperfect 
observation by loop detectors, the transient e˙ects in saturated fow at the start and end of a green 
phase, etc. 
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8.2 Proportionally Fair (PF) Algorithm 

Under our proposed PF algorithm, green time splits are updated at every intersection once every 
cycle. At a given intersection, one phase is arbitrarily selected to be the reference, and green time 
splits are updated at the beginning of this phase as follows. For every incoming link i, let x̄i 
be the queue length, averaged over the previous cycle. When the phases are disjoint, i.e., every 
movement is permitted in only one phase, the green time split for phase φr, r ∈ {1, . . . ,m} is equal P P P 
to f(x̄i)/( f(x̄j )), where i∈φ k∈{1,...,m} j∈φk � � 

ηx̄i
f(x̄i) = x̄i exp , η > 0 

Bi(Bi − x̄i) 

is a capacity-aware scaling of the queue length for link i. When the phases have overlap, the green 
time splits under PF do not have an explicit expression, but can be obtained by solving a convex 
optimization problem similar to the one in [11]. 

8.3 Simulation Results 

The simulation parameters are the same as the one used in Section 7.2. A boundary point on the 
throughput under PF policy is found as follows. We consider two scenarios corresponding to two 
values of R. In the frst case, R is chosen to induce bottleneck in the interior of the network, and 
thereby allowing us to study the e˙ect of η on throughput. In the second case, R is chosen to induce 
bottleneck on link 36. In each scenario, we start with nominal external infows in Table 4, and then 
increase the component of the infow corresponding to link 36 until the fraction of vehicles spilling 
outside the network at each of the entry points is less than 5 %. We repeat this procedure by 
choosing a few values of length of the entry links, and then extrapolating the curve ft to estimate 
the value of throughput that is not a˙ected by the fnite length of the entry links. The corresponding 
throughput vs. length plots for the two R scenarios are plotted in Figure 9. In each simulation, the 
throughput values were optimized for η. Note that the upper bound values are di˙erent in the two 
plots since the value of z in (12) depend on R. 
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Figure 9: Comparison between empirical estimate of throughpout (red) and upper bound (blue) for 
di˙erent lengths of the entry link. The left fgure corresponds to R which induces bottleneck in the 
interior of the network, and the fgure on the right corresponds to R which induces bottleneck on the 
entry link 36. The caption on the top of each fgure is the expression for the red curve obtained from 
regression. 
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As expected, there is a gap between the empirical estimate of throughput and the upper bound. 
In the frst scenario, when the bottleneck is in the interior, we believe that throughput under PF 
can be increased by a principled consideration of o˙sets, which also e˙ects its performance under 
spillbacks. In the second scenario, when the bottleneck is on the entry link, we believe that the 
upper bound is conservative because it does not take into account the loss in capacity due to the 
lane-changing e˙ect. 

9 Technical Proofs 

9.1 Proof of Proposition 1 

The feasible set for (2c) is non-empty (z = 0 is always feasible) and compact. Therefore, there 
exists at least one solution, say ẑ, to (2c). 

maxWe frst note that if z and z̃  satisfy the constraints in (2c), then so does z defned by 
max maxz = max{zi, z̃i} for all i ∈ E . This is because z ≤ c(t) and z̃  ≤ c(t) implies that z ≤ c(t),i 

maxand therefore the frst inequality in (2c) is trivially satisfed by z . With respect to the second 
max maxinequality, fx some i ∈ I, and let z = zi (without loss of generality). Then, z = zi ≤ λ̃i +i iP P P P max max 

max Rjizj + max Rjizj ≤ λ̃i + max Rjiz + max Rjiz = j∈Ei: z =zj j∈Ei: z =z̃j j∈Ei: z =zj j j∈Ei: z =z̃j jj j j jP maxλ̃i + , where the frst inequality follows from (2c) and the second one follows from the j∈Ei 
Rjizj 

maxdefnition of z . This argument is used to prove that ẑ  is unique as follows. Let z and z̃  be two 
max maxoptimal solutions. Since z =6 z̃, there exist i, j ∈ E such that zi > zi and zj > z̃j . Therefore, 

max1T z > 1T z = 1T z̃, contradicting optimality of z and z̃. 
In order to prove the frst part of (5), let ẑi < ci(t) for some i ∈ E \I(x). Then, a small increase 

in ẑi will trivially maintain feasibility of the frst set of constraints in (2c), and also maintains 
feasibility with respect to the second set of constraints because it only a˙ects the right hand side 
which increases with increase in ẑi. However, increasing ẑi strictly increases the objective, thereby 
contradicting optimality of ẑ. 

With regards to the second part of (5), if ci(t) < λ̃i(t)+ 
P 

j∈Ei 
Rjiẑj for some i ∈ I(x), then the 

proof follows along the same lines as the frst part of (5). Allowing ẑi < λ̃i(t)+ 
P 

j∈Ei 
Rjiẑj < ci(t) 

for some i ∈ I(x) leads to a contradiction for similar reason. 

9.2 Proof of Proposition 2 

Once the solution (x(t), β(t)) to (2) is proven to exist and be unique, its non-negativity follows 
from the constraint on z(x, t) in (2c). Our approach to showing the existence and uniqueness of 
solution to (2) is to show it on contiguous intervals [0, 4), [4, 24), . . .. 4 > 0 is chosen to be (the 
greatest) common divisor of: (i) time instants in [−δ,̄ 0] corresponding to switch in values of z(t); 
(ii) time instants in [0, T ] corresponding to switch in values of λ(t) and c(t); and (iii) {δji}j,i∈E . 
Under Assumption 2, such a 4 > 0 exists if, e.g., the three types of quantities are all rational 
numbers. 

The next result establishes the required existence and uniqueness of solution to (2) over [0, 4), 
along with an important input-output property. 

Lemma 1. If λ̃ : [0, 4) → RE is piece-wise constant and non-increasing, and c : [0, 4) → RE 
≥0 ≥0 

is constant, then, for any x(0) ∈ RE≥0, there exists a unique solution x : [0, 4) → RE to (2).≥0 

Moreover, z : [0, 4) → RE is piece-wise constant and non-increasing. ≥0 
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Proof. (2c) and Proposition 1 imply that z(x, t) remains constant over a time interval if so do 
λ̃(t), c(t) and I(x). Let (τ1, τ2, . . . , ) ∈ (0, 4) be the fnite number of time instants corresponding 
to changes in the value of λ̃(t). Since λ̃(t) and c(t) are constant over [0, τ1), z(x, t) will remain 
constant at least until say at ts ∈ [0, τ1) when there is possibly a change in I(x). This also implies 
the existence and uniqueness of solution to (2) over [0, ts). Moreover, since z(x, t) is constant over 
[0, ts), if xi(t = 0+) = 0 for some i ∈ E , then xi(t) ≡ 0 over [0, ts]. Thus, a change in the set I(x) at ts 

could only involve its expansion. Therefore, (2c) implies that z(x(ts), ts) ≤ z(x(t−), t−). Continuing s s 
along these lines, I(x) is non-contracting over [0, τ1). Since λ̃(τ1) < λ̃(τ−) by assumption, (2c) 1 
implies that I(x(τ−)) ( I(x(τ1)), and hence also z(x(τ1), τ1) ≤ z(x(τ−), τ−). Collecting these facts 1 1 1 
together implies that I(x) is non-contracting and z(x, t) is non-increasing over [0, 4). Combining 
this with the fact that I(x) can take at most 2E distinct values, implies that the total number 
of changes in I(x) over [0, 4) are fnite. Concatenating the unique solutions to (1) from between 
changes in I(x) gives the lemma. 

Since z(t) is non-increasing and piece-wise constant in each of the intervals [−δ,̄ −δ̄+4), . . . , [0, 4) 
(cf. Lemma 1 and the assumption in Proposition 2), this implies that λ̃(t) is non-increasing and 
piece-wise constant over [4, 24). One can then use Lemma 1 to show existence and uniqueness of 
solution over [4, 24). Recursive application of the procedure then proves Proposition 2. 

9.3 Proof of Theorem 1 

The structure of the proof of Theorem 1 follows closely along the lines of [7], with di˙erences due 
to the combination of dynamics in (2a), and the fact that we allow δ = 0. 

0Lemma 2. Suppose x0 ≤ x0, λ(t) ≤ λ0(t) and c(t) = c0(t) for all t ≥ 0, and {z(t), t ∈ [−δ,̄ 0)} ≤ 
{z0(t), t ∈ [−δ,̄ 0)}. If {λ(t), λ0(t), c(t), c0(t)} are all piecewise constant, then the corresponding 
solutions to (2) satisfy x(t) ≤ x0(t) and z(t) ≤ z0(t) for all t ≥ 0. 

Proof. It suÿces to show the result for a small time interval starting from zero. Moreover, it is 
suÿcient to show that x(t) ≤ x0(t) in this interval, since this implies I(x0(t)) ⊆ I(x(t)), and hence 
z(t) ≤ z0(t) along the same lines as the proof of Lemma 1. We shall prove this for each component 
of x(t) and x0(t) independently. Fix a component i ∈ E . 

0 P P 
1. If 0 < x0,i ≤ x0,i, then, recalling (4), ẋ i(t = 0) = λi(0)+ j∈E\Ei 

Rjizj (−δji)+ j∈Ei 
Rjizi(t = P P0 0 0 00) − ci(0) ≤ λ0 i(0) + = 0) − ci(t) = ẋ i, where we have j∈E\Ei 

Rjizj (−δji) + j∈Ei 
Rjizj (t 

0used the fact that x0 ≤ x implies z(0) ≤ z0(0). Hence x(t) ≤ x0(t) for small time interval 0 
starting from zero. 

02. Now consider the case when 0 = x0,i ≤ x0,i. If xi(t) ≡ 0 for a small interval starting from 
0zero, then trivially xi(t) ≤ xi(t) over that interval. Otherwise, the proof follows along the 

same lines as Case 1. 

Lemma 3. If λ(t), c(t), and (x(0), β(0)) satisfy Assumption 2, and if the stability condition in 
Defnition 1 holds true, then the solution x(t) to (2) is bounded. P 
Proof. (2a) can be rewritten as ẋ i = λi(t) + Rjizj (t) − zi(t) + 4i(t), wherej∈E �R �P R P Rt s t4i(t) = Rji (zj (t − δji) − zj (t)). Therefore, 4i(r) dr = Rji zj (r) − zj (r) dr.j∈E s j∈E s−δji t−δji 
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R t¯Since δji ≤ δ and zj (r) ≤ cj (r) is bounded, it follows that | 4(r) dr| ≤ d1 for some constant s 
dd > 0. Suppose xi(t0) > NT c̄i for some constant N > and t0 ≥ 0, where � > 0 is fromT� 

Defnition 1. Since xi(t + T ) − xi(t) ≥ −T c̄i, we have xi(t) > 0 for t0 ≤ t ≤ t0 + NT . Therefore, X 
xi(t0 + NT ) − xi(t0) ≤ NT λ̄ 

i + NT Rjic̄j − NT c̄i + d ≤ −NT� + d < 0 
j∈E 

where we use the stability condition from Defnition 1 in the second inequality. This is suÿcient to 
show that xi(t) is bounded, since the queue length increments per cycle are upper bounded. 

We next state an important result on contraction and a global attractivity property of (2a). 

Proposition 6. Let the conditions in Proposition 2 hold true. If (x(t), β(t)) and (x̃(t), β̃(t)) denote 
the trajectories starting from (x0, β0) and (x̃0, β̃0) respectively, then 

kx(t) − x̃(t)k1 + kβ(t) − β̃(t)k1 ≤ kx0 − x̃0k1 + kβ0 − β̃0k1 (13) 

Moreover, if the stability condition in Defnition 1 is satisfed, then 

lim kx(t) − x̃(t)k1 = 0, lim kβ(t) − β̃(t)k1 = 0 (14)
t→∞ t→∞ 

¯Proof. Let x̄0,i := max{x0,i, x̃0,i} and x0,i := min{x0,i, x̃0,i}, for all i ∈ E . Let β0 and β be defnedP P 0 
similarly. Therefore, kx0 − x̃0k1 = |x0,i − x̃0,i| = (x̄0,i − x0,i) = kx̄0 − x0k1. Similarly, i∈E i∈E 

¯ ¯kβ0 − β̃0k1 = kβ̄  
0 − β k1. Let (x̄(t), β(t)) and (x(t), β(t)) be the trajectories starting from (x̄0, β0)0 

and (x0, β ) respectively. Lemma 2 then implies that x(t) ≤ x(t) ≤ x̄(t), x(t) ≤ x̃(t) ≤ x̄(t),
0 

¯ ¯β(t) ≤ β(t) ≤ β(t), and β(t) ≤ β̃(t) ≤ β(t), which then implies that kx(t) − x̃(t)k1 ≤ kx̄(t) − x(t)k1 

and kβ(t) − β̃(t)k1 ≤ kβ̄(t) − β(t)k1. Therefore, it suÿces to show 

kx̄(t) − x(t)k1 + kβ̄(t) − β(t)k1 ≤ kx̄0 − x0k1 + kβ̄  
0 − β k1 (15)

0 

We show (15) using an intuitive argument similar to the one used in [7, Lemma 2]. Color the 
¯vehicles in the initial state (i.e., (x̄0, β0) and (x0, β )) red, and all the vehicles arriving after that 

0 
as black. Therefore, the right hand side in (15) represents the excess red vehicles initially in the 
system with the larger initial condition. Subsequently, in each queue, there will be black and red 
vehicles. Change the service discipline in each queue so that all black vehicles are served ahead 
of every red vehicle. This has two implications. First, since the service times for red vehicles in 
each queue are the same in each of the two systems, every red vehicle common to both the systems 
receives identical service in the two systems. That is, more red vehicles depart the system starting 

¯from (x̄0, β0) than in the system starting from (x0, β ), i.e., 
0 ⎛ ⎞Z 0 ZX X X X t 

red(x̄0,i + Rji z̄i(s) ds) − ⎝x̄ i (t) + Rji z̄i(s) ds⎠ 

i∈E j∈E i∈E j∈E−δji t−δji ⎛ ⎞Z ZX X t X X t 
red red≥ (x0,i + Rji zi(s) ds) − ⎝xi (t) + Rji zi (s) ds⎠ 

i∈E j∈E i∈E j∈Et−δji t−δji 
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i.e., Z tX� � XX � �red red red red x̄ (t) − xi (t) + Rji z̄  i (s) − zi (s) dsi 
i∈E i∈E j∈E t−δji Z 0X� � XX 

≤ x̄0,i − x0,i + Rji (z̄i(s) − zi(s)) ds i.e., 
i∈E i∈E j∈E −δji 

red(t) − x red(t)k1 + k ̄kx̄ βred(t) − βred(t)k1 ≤ kx̄0 − x0k1 + kβ̄  
0 − β k1 (16)

0 

Second, service of black vehicles is una˙ected by red vehicles in both the systems. Therefore, the 
number of black vehicles in each queue, and in particular, the total number of black vehicles in the 
entire network for both the systems are the same at any time. This combined with (16) gives (15). 

In order to prove (14), let (x̂(t), β̂(t)) be the trajectory starting from the initial condition (0, 0). 
Since kx(t) − x̃(t)k1 ≤ kx(t) − x̂(t)k1 + kx̃(t) − x̂(t)k1 and kβ(t) − β̃(t)k1 ≤ kβ(t) − β̂(t)k1 + 
kβ̃(t) − β̂(t)k1, it suÿces to prove (14) for (x̃(0), β̃(0)) = (x̂(0), β̂(0)) = (0, 0). Using the red vehicle 
terminology from before, kx(t) − x̃(t)k1 + kβ(t) − β̃(t)k1 then denotes the number of red vehicles 
in (x(t), β(t)). Stability condition implies that all red vehicles eventually leave the network, i.e., � � 
limt→∞ kx(t) − x̃(t)k1 + kβ(t) − β̃(t)k1 = 0. 

We can now fnish the proof of Theorem 1 as follows. Consider the trajectory starting from 
(x(0), β(0)) = (0, 0). In particular, consider the sequence of following points on this trajectory: 
{(x(nT ), β(nT ))}∞ Monotonicity (Lemma 2) and boundedness (Lemma 3) implies that thisn=0. 
sequence converges, say to (x ∗, β∗). We now establish that the trajectory starting from such a point 
is periodic. This, together with global attractivity implied by (14), then establishes Theorem 1, 
i.e., every trajectory converges to the periodic trajectory starting from (x ∗, β∗). 

If F (x((n − 1)T ), β((n − 1)T )) = (x(nT ), β(nT )) denotes the associated Poincare map, then 
the desired periodicity is equivalent to showing F (x ∗, β∗) = (x ∗, β∗), i.e., (x ∗(T ), β∗(T )) = (x ∗, β∗), 
i.e., limn→∞(x((n + 1)T ), β((n + 1)T )) = (x ∗, β∗), i.e., limn→∞ F (x(nT ), β(nT )) = (x ∗, β∗). A 
suÿcient condition for this is continuity of F , which follows from (13). 

9.4 Technical Corollary 

The following corollary to Lemma 2 and Proposition 6 is used in Section 6. 

Corollary 1. Consider an isolated link i with T -periodic capacity function ci(t). Let yi(t) and 
0yi(t) be T -periodic infow functions, both satisfying the stability condition in Defnition 1, and 

0 ∗ yi(t) ≤ yi(t) for all t ∈ [0, T ]. If the corresponding steady state T -periodic queue lengths are xi (t) 
∗0 ∗ ∗0and x i(t) respectively, and the steady state T -periodic link outfows are z (t) and z i(t) respectively, i 
∗ ∗0 ∗ ∗0then x (t) ≤ x i(t) and z (t) ≤ z i(t) for all t ∈ [0, T ].i i 

Proof. Let (x(t), z(t)) and (x0(t), z0(t)) be the system trajectories for the two systems, both starting 
from initial condition (x0, β0). Lemma 2 implies that x0(t) ≥ x(t) and z0(t) ≥ z(t) for all t ≥ 0. 
On the other hand, Theorem 1 implies that (x(t), z(t)) and (x0(t), z0(t)) converge to T -periodic 
trajectories (x ∗(t), z ∗(t)) and (x ∗0(t), z ∗0(t)) respectively. Combining these facts gives the desired 
result. 
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10 Conclusions and Recommendations 

In this study, we proposed a delay di˙erential equation framework to simulate queue length dynamics 
for signalized arterial networks. Under periodicity and stability conditions, existence of a globally 
attractive periodic orbit is established for fxed-time control. An iterative procedure is also provided 
to compute this periodic orbit without direct simulations. Collectively, these results provide useful 
computational tools to evaluate the performance of signalized arterial networks for given traÿc 
signal control parameters. 

We plan to extend the model and its analysis to capture spillbacks and dependency of inter-
link travel time on queue length. While the well-posedness of the model proposed in this study 
extends to a reasonable class of adaptive control policies, extensions of the steady-state analysis 
and computation remains to be done. We plan to leverage analysis from our previous work [14] 
for this purpose. We also plan to design traÿc signal control optimization techniques which use 
representation of steady state queue lengths in terms of transition points as developed in this study. 
Finally, feedback control, possibly in a distributed manner, along the lines of recent work for green 
time split control, e.g., see [15], [11], would greatly facilitate scalability. 

Specifc recommendations are as follows: 

1. Delay di˙erential equations for queue length dynamics, with outfows given by solutions to 
linear program provide a promising framework for macroscopic traÿc fow over signalized net-
works, possibly even under spillbacks. Rigorous understanding of the mathematical properties 
of these models is an interesting direction for the traÿc fow theory community. 

2. Non-harmonic representations of traÿc fow over signalized networks have the potential to be 
a viable framework for performance evaluation. 

3. While adaptive traÿc signal control algorithms inspired by similar algorithms from stochas-
tic networks, e.g., proportionally fait (PF), give higher throughput than fxed-time control, 
the well-known optimality results from stochastic networks do not appear to hold in micro-
simulations. This is possibly because there is not yet a defnite adaptation of PF to address 
spillback and to integrate o˙set optimization, and the upper bound estimates for throughput 
from stochastic networks are optimistic for urban traÿc networks. 

4. Accurate evaluation of the fundamental limit on throughput under adaptive traÿc signal 
control policies requires accurate modeling of the dependence of link-wise fow capacity on 
traÿc fow. Our preliminary simulations in VISSIM suggest that the adjustment factors in 
HCM tend to underestimate this dependence. 

11 Implementation 

Not applicable. 
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